Part Number Hot Search : 
HDF41 C4696 MAX19 CTCDR AT754A 1008F CAT102 M2950
Product Description
Full Text Search
 

To Download IRFRU3504PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irfr3504pbf irfu3504pbf hexfet ? power mosfet absolute maximum ratings parameter typ. max. units r jc junction-to-case ??? 1.09 r ja junction-to-ambient (pcb mount)  ??? 50 c/w r ja junction-to-ambient ??? 110 thermal resistance v dss = 40v r ds(on) = 9.2m ? i d = 30a  www.kersemi.com 1 automotive mosfet description specifically designed for automotive applications, this hexfet? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. addi- tional features of this product are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. the d-pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. the straight lead version (irfu series) is for through-hole mounting applications. power dissipation levels up to 1.5 watts are possible in typical surface mount applications. s d g features  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax d-pak irfr3504 i-pak irfu3504 parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) 87 i d @ t c = 100c continuous drain current, v gs @ 10v (see fig.9) 61 a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) 30 i dm pulsed drain current   350 p d @t c = 25c power dissipation 140 w linear derating factor 0.92 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  240 mj e as (tested) single pulse avalanche energy tested value  480 i ar avalanche current  see fig.12a, 12b, 15, 16 a e ar repetitive avalanche energy  mj t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c pd - 95315a  lead-free

 2 www.kersemi.com parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c, i s = 30a, v gs = 0v  t rr reverse recovery time ??? 53 80 ns t j = 25c, i f = 30a, v dd = 20v q rr reverse recovery charge ??? 86 130 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) electrical characteristics @ t j = 25c (unless otherwise specified) s d g source-drain ratings and characteristics 87 350  parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 40 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.041 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? 7.8 9.2 m ? v gs = 10v, i d = 30a  v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = 10v, i d = 250a g fs forward transconductance 40 ??? ??? s v ds = 10v, i d = 30a ??? ??? 20 a v ds = 40v, v gs = 0v ??? ??? 250 v ds = 40v, v gs = 0v, t j = 125c gate-to-source forward leakage ??? ??? 200 v gs = 20v gate-to-source reverse leakage ??? ??? -200 na v gs = -20v q g total gate charge ??? 48 71 i d = 30a q gs gate-to-source charge ??? 12 18 nc v ds = 32v q gd gate-to-drain ("miller") charge ??? 13 20 v gs = 10v  t d(on) turn-on delay time ??? 11 ??? v dd = 20v t r rise time ??? 53 ??? i d = 30a t d(off) turn-off delay time ??? 36 ??? r g = 6.8 ? t f fall time ??? 22 ??? v gs = 10v  l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 2150 ??? v gs = 0v c oss output capacitance ??? 580 ??? v ds = 25v c rss reverse transfer capacitance ??? 46 ??? pf ? = 1.0mhz, see fig. 5 c oss output capacitance ??? 2830 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 510 ??? v gs = 0v, v ds = 32v, ? = 1.0mhz c oss eff. effective output capacitance  ??? 870 ??? v gs = 0v, v ds = 0v to 32v s d g i gss ns i dss drain-to-source leakage current

 www.kersemi.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 100 0 v ds , drain-to-source voltage (v) 0.001 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.0v 20s pulse width tj = 25c vgs top 15v 10v 7.0v 6.0v 5.5v 5.0v 4.5v bottom 4.0v 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 v gs , gate-to-source voltage (v) 0.10 1.00 10.00 100.00 1000.00 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 20s pulse width 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.0v 20s pulse width tj = 175c vgs top 15v 10v 7.0v 6.0v 5.5v 5.0v 4.5v bottom 4.0v fig 4. typical forward transconductance vs. drain current 0 20 40 60 80 100 120 i d ,drain-to-source current (a) 0 10 20 30 40 50 60 70 80 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 25v 20s pulse width

 4 www.kersemi.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 10 20 30 40 50 0 2 4 6 8 10 12 q , total gate charge (nc) v , gate-to-source voltage (v) g gs i = d 30a v = 8v ds v = 20v ds v = 32v ds 0.1 1 10 100 1000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss

 www.kersemi.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 87a 25 50 75 100 125 150 175 0 20 40 60 80 100 t , case temperature ( c) i , drain current (a) c d limited by package

 6 www.kersemi.com q g q gs q gd v g charge d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 0 100 200 300 400 500 starting tj, junction temperature ( c) e , single pulse avalanche energy (mj) as i d top bottom 12a 21a 30a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a

 www.kersemi.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ' t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 10000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ' tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 30a

 8 www.kersemi.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
     + - + + + - - -       ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f   &' 1 ( 
#   0.1 %        + -  fig 18a. switching time test circuit fig 18b. switching time waveforms

 www.kersemi.com 9  

  

  
      
   12 in the ass embly line "a" ass embled on ww 16, 1999 example: with assembly t his is an irfr120 lot code 1234 ye ar 9 = 199 9 dat e code we e k 16 part number logo int ernat ional rect ifier as s e mb l y lot code 916a irfu120 34 year 9 = 1999 dat e code or p = designat es lead-free product (optional) note: "p" in as s embly line position i ndi cates "l ead-f r ee" 12 34 we e k 16 a = assembly site code part number irf u120 line a logo lot code as s e mb l y int ernational rectifier

 10 www.kersemi.com  
   
      
    
  assembly example: with assembly this is an irfu120 year 9 = 199 9 dat e code line a week 19 in the assembly line "a" as s e mble d on ww 19, 1999 lot code 5678 part number 56 irfu120 international logo rectifier lot code 919a 78 note: "p" in ass embly line pos i ti on i ndi cates "l ead- f r ee"  56 78 as s e mb l y lot code rectifier logo international irfu120 part number we e k 1 9 dat e code year 9 = 1999 a = as s e mb l y s i t e code p = designates lead-free product (optional)

 www.kersemi.com 11   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.52mh, r g = 25 ? , i as = 30a, v gs =10v. part not recommended for use above this value.  i sd 30a, di/dt 170a/s, v dd v (br)dss , t j 175c.  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.  when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994.   

    
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFRU3504PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X